
Microthreading as a Novel Method for Close Coupling of
Custom Hardware Accelerators to SVP Processors

Jaroslav Sykora, Leos Kafka, Martin Danek, and Lukas Kohout.
Department of Signal Processing

Institute of Information Theory and Automation of the ASCR (UTIA AV CR, v.v.i.)
Pod Vodarenskou vezi 4, Prague, Czech Republic

Email: {sykora, kafkal, danek, kohoutl}@utia.cas.cz

Abstract—We present a new low-level interfacing scheme for con-
necting custom accelerators to processors that tolerates latencies that
usually occur when accessing hardware accelerators from software.
The scheme is based on the Self-adaptive Virtual Processor (SVP)
architecture and on the micro-threading concept. Our presentation
is based on a sample implementation of the SVP architecture in an
extended version of the LEON3 processor called UTLEON3.

The SVP concurrency paradigm makes data dependencies explicit in
the dynamic tree of threads. This enables a system to execute threads
concurrently in different processor cores. Previous SVP work presumed
the cores are homogeneous, for example an array of microthreaded
processors sharing a dynamic pool of microthreads. In this work we
propose a heterogeneous system of general-purpose processor cores
and custom hardware accelerators. The accelerators dynamically pick
families of threads from the pool and execute them concurrently.
We introduce the Thread Mapping Table (TMT) hardware unit
that couples the software and hardware implementations of the user
computations. The TMT unit allows to realize the coupling scheme
seamlessly without modifications of the processor ISA.

The advantage of the described scheme is in decoupling application
programming from specific details of the hardware accelerator archi-
tecture (identical behaviour of a software create and hardware create),
and in eliminating the influence of hardware access latencies. Our
simulation and FPGA implementation results prove that the additional
hardware access latencies in the processor are tolerated by the SVP
architecture.

Keywords-Microthreading, SVP concurrency model, custom acceler-
ators, hardware families of threads, UTLEON3 processor.

I. INTRODUCTION

Processor architectures are progressively evolving towards mul-
ticores. The scaling of the manufacturing process makes placing
many cooperating processor cores on a chip feasible. An array of
processing cores could also simplify the energy and performance
scaling, were it carried out on-line or during the system-on-chip
design.

Figure 1 shows organization of a multithreaded system composed
of both the general-purpose and specialized processors (custom
accelerators). In the traditional organization (Figure 1a) threads are
managed and scheduled by the operating system (e.g. a pthreads
library on top of Linux). This is true even for many processors
that directly support multiple threads executed in hardware for
they use the same software abstraction layers anyway. In this
organization accelerators can be managed by middleware soft-
ware in the operating system, which can also take care of any
context-switch mechanisms they require to support multithreaded
execution. However, in the microthreaded environment (Figure 1b)
the thread execution is exposed to application programs at the
processor Instruction Set Architecture level. This organization calls
for a novel interfacing scheme between the general-purpose and

Resource

Mng.

Operating

System

Task 1

CPU
Custom

Accelerators

Task 2 Task 3

Software Threads

(a) Custom accelerators managed
by OS with software threads.

High-Level

Res. Mng.Operating System

Task 1

Custom

Accelerators

Task 2 Task 3

Microthreads

µT CPU

TMT,

JCU

(b) Accelerators in the microthreaded
environment.

Figure 1. Comparing multithreaded systems: traditional and microthreaded
organizations.

specialized processors that can exploit the parallelism of the SVP
model.

The structure of the paper is as follows: In this section we
overview the previous related work, and state the contributions
of this paper. In Sections II and III the reader is introduced to
the SVP model and the UTLEON3 processor microarchitecture,
respectively. In Section IV the proposed microthreaded coupling
scheme is presented. In Section V experimental evaluation is given,
and we conclude the paper in Section VI.

A. Low-level Accelerator Coupling Schemes

From the hardware organization perspective the custom acceler-
ator can be situated relative to the processor in three main positions
[1]. In the Attached Processor scheme the accelerator is placed
on an I/O bus, along with other peripheral modules; e.g. BCE1 [2],
Morpheus [3]. Memory mapped registers or local memories are
typically used as a communication interface, and synchronization is
handled in software by polling or by interrupts. Attached processors
do not depend on the controlling processor ISA (Instruction Set
Architecture), and their I/O interface operates on well-defined
system buses; thus they are easily portable. However, as the
application and configuration data have to be transferred explicitly
to/from them by the CPU, and as the synchronization is handled
in software, the latencies and control overhead can be high; thus
greater parts of a computation need to be implemented in the
accelerator to take advantage of data locality and to combat the
overhead.

In Reconfigurable Functional Units (RFU) the reconfigurable
logic is an integral part of the processor pipeline, along with other
functional units, and instructions are issued into and retired from
the RFU using the same mechanism; e.g. Chimaera [4], Garp [5].

1BCE = Basic Computing Element

Data are communicated implicitly through the processor register
file. The RFU hardware is not portable as it is an integral part
of the host processor and its ISA. For the scheme to be effective
the compiler for the processor architecture has to be extended to
automatically analyze the application source code, identify parts
suitable for RFU execution, generate configuration bitstreams for
RFU, and use the newly created instructions during the code
generation process [1].

In the Coprocessor scheme the accelerator has an independent
processing pipeline and register set; e.g. MOLEN [6]. The cru-
cial difference from the attached processors scheme is that the
synchronization between the CPU pipeline and the coprocessor
pipeline is handled in hardware, thus reducing control overheads.
For example, a coprocessor can stall the CPU pipeline when it
executes a coprocessor instruction while the previous one has not
completed yet.

Multithreaded architectures in general introduce a problem of
resource sharing of the reconfigurable accelerators between multi-
ple threads [7]. At the lowest level this is manifested by the need
for a synchronization and a context switch mechanism. In RCC
[8] (multithreaded extension of the Molen [6] protocol), only one
thread at a time is allowed to execute in a reconfigurable unit.
In Chimaera [4] the RFU is always stateless (i.e. it is purely
combinatorial) so there is not any context to be saved on a thread
switch. On the other hand, the Garp [5] RFU architecture provides
special instructions for context save/restore on a thread switch to
be used by the operating system.

B. Contributions of the Paper

The Microthreaded Coupling Scheme, proposed in this paper,
uses hardware synchronization between the processor’s Thread
Scheduler and the subsystem of custom accelerators. Parameters
are communicated through the processor Register File the same
way as in a normal function call. However, the custom accelerators
themselves are not tailored specially for our coupling scheme: in
the case study we used our in-house framework that was designed
for a traditional single-threaded system with the MicroBlaze pro-
cessor [2].

We implement a Thread Mapping Table (TMT, see below),
a special hardware unit which enables the coupling scheme to be
implemented without modifications to the SVP processor ISA (such
as introducing a new instruction, cf. the MOLEN protocol [6]).

C. Other Related Work

The GPGPU2 programing model is multithreaded, however the
underlying architecture executes threads in lock-step in SIMD
blocks, called warps, that typically comprise 16-32 threads. The
system delivers high performance only when all threads within
one warp execute the same instructions. The low-level interfacing
scheme is the attached processor. By contrast the SVP model is
targeted to general-purpose programs.

BORPH [9] is an operating system based on Linux that was
extended to support reconfigurable hardware accelerators as the
first-class citizens in the environment. The operating system treats
accelerators as stand-alone processes, and provides them unified
file I/O and resource management services (Figure 1a).

2GPGPU = General-purpose computing on graphics processing units

When partitioning an application, its high-level control functions
are implemented in software and the low-level ‘number-crunching’
functions are moved to custom hardware. A common problem is
to determine the right level for the decomposition. In this regard
one extreme is the reconfigurable functional unit that inserts fine
grained custom hardware directly into the processor data path. The
other extreme is the BORPH OS which treats custom hardware as
an OS-level process.

II. SVP CONCURRENCY MODEL

The Self-adaptive Virtual Processor (SVP) is a general concur-
rency model used to design and program multithreaded multicore
systems. It has been described in many previous publications [10],
[11].

The SVP model expresses fine-grained concurrency by com-
position of microthreads.3 A microthread comprises only a few
processor instructions that typically implement a body of a loop
and share only a small portion of the processor register file. A
family of threads is an ordered set of threads, all created by one
processor instruction (called create). The ordering is defined
by a sequence of integer index values that are specified during
the create event as a {start, step, limit} triple. These values are
provided by the program using the setstart, setstep, and
setlimit instructions, respectively. Microthreads may execute in
parallel by default, and only explicit unidirectional dependencies
between successive threads within one family, and between a parent
thread and its child family, are allowed.

By creating a family of many fine-grained threads in one event
the SVP model allows an implementation to amortize overheads
associated with individual thread management. A family of threads
represents a batch of coarse-grained work that is to be scheduled in
a multicore system. In contrast to the GPGPU model, the individual
threads are executed independently so that no restriction is placed
on conditional branches in threads.

To ensure an acyclic dependency graph of threads, the SVP
model allows only unidirectional dependencies between mi-
crothreads. This enables a processor implementation to freely
choose the number of concurrent threads it will schedule together,
called the blocksize parameter (provided the implementation re-
serves resources for microthreads as per their ordering within the
family to avoid the deadlock).

A. Multiple Cores in SVP

The SVP model is oblivious to the number of processing cores in
the system. A given family of threads can be dynamically scheduled
entirely on a single processor, or distributed across multiple cores.
In the latter case each thread executes in one given core, but
different threads can be scheduled in different cores. Each family
of threads is associated to a compute cluster (called ‘local place’)
composed of several tightly coupled cores. Threads of the family
are scheduled concurrently within their local cluster. To delegate
a family of threads to another cluster the programmer can use the
setplace instruction.

The previous SVP work assumed that cores within clusters are
homogeneous (at least from the ISA point of view) to enable

3The terms ‘thread’ and ‘microthread’ are used interchangeably through-
out the text.

sum += x[i]*y[i]
sum += x[i]*y[i]

sum += x[i]*y[i]
sum += x[k+i]*b[i]

sum += x[i]*y[i]
sum += x[i]*y[i]

sum += x[i]*y[i]
sum += x[k+i]*b[i]

create FIR family;
sync;

create MAC family;
sync;

z[k] = sum;

k=0 k=1

i=0 to (t-1) i=0 to (t-1)

‘M
A
C
’

µ
-t
h
re
a
d
s

F
IR
 a
t

p
o
in
t
z
[k
]

F
IR
 f
o
r

a
ll
p
o
in
ts

create MAC family;
sync;

z[k] = sum;

...)(
1

0

∑
−

=

+
⋅=

t

i

iikk
bxz

For all k {

}

Figure 2. Graphical representation of (a part of) the microthreaded
FIR computation with nested families of threads. A tree of threads is
dynamically created. The arrows represent the dependencies visible in the
SVP model.

transparent thread migration. In this work we envision hetero-
geneous microthreaded clusters composed of both the general-
purpose and specialized processors (custom accelerators). As the
specialized processors by definition cannot execute all kinds of
threads, the system requires additional information to discriminate
among them so that they can be distributed correctly in the
cluster. Instead of extending the SVP ISA with a new instruction,
we introduce a Thread Mapping Table (TMT) hardware unit to
provide the information. Conceptually the TMT unit is a software-
controlled associative table that identifies threads by their memory
addresses and maps them to a class of specialized processors which
can execute the threads more efficiently than the general-purpose
core. The table is to be administered by a resource management
software based on information provided by applications, and with
respect to the current configuration of the specialized processors
(if reconfigurable accelerator cores are used). In the microthreaded
coupling scheme we further take advantage of the fact that threads
are created in groups (families) to amortize the cost of processing
in the TMT unit. Only the family creation event itself has to be
routed through the TMT unit, not the individual microthreads.

B. Program Example

Figure 2 shows an implementation of a FIR4 filter that we use
to demonstrate the approach. The filter output is defined by the
equation:

zk =

t−1∑
i=0

(xk+i · bi) (1)

where z is an output vector (with n−t+1 elements), x is an input
vector (with n elements), b is a vector of coefficients (taps), and t
is the length of vector b. We assume n ≥ t.

In a sequential program the computation can be implemented
using two nested for loops: the inner loop computes the dot product,
while the outer loop runs over the whole index space of the vector
z. In the SVP paradigm we implement both loops as nested families
of microthreads, represented by oval boxes in Figure 2.

4FIR = Finite Impulse Response

The hardware-accelerated version of the compute kernel itself
was developed using the approach described in [2]: Custom ac-
celerator cores, called BCE, are reconfigurable vector processing
units specialized for a limited set of operations that are required in
a given application. All BCEs are interfaced by dual-ported (DP)
memory blocks that are common in FPGAs. The input data (arrays
x and b) are loaded into two local memory blocks, the FIR BCE
is configured, the computation is executed, and finally the output
data is unloaded from the third memory block to array z. The data
transfers are not handled by the accelerators themselves. The BCE
cores are deliberately not aware of the microthreaded execution in
the main processor, thus existing accelerators can be reused.

III. MICROTHREADED UTLEON3 PROCESSOR

The UTLEON3 processor is an implementation of the SVP
model for managing concurrency. The UTLEON3 core is written
in VHDL, it has a 7-stage in-order single-issue multi-threaded ex-
ecution pipeline, and it is fully FPGA-synthesizable. It is based on
the LEON3 SPARCv8 embedded processor from Aeroflex Gaisler.
For more information please see the prior work [12]; the section
below summarises the microarchitecture.

A. Microarchitecture Overview

Register File: Traditional multi-threaded architectures often
replicate the whole processor state for each thread context sup-
ported, including all the architectural (program visible) registers
[13], [14]. This simplifies the software programming model, but
it requires a large register file to support just few thread contexts.
As the processor register file is one of the most expensive units in
a CPU, its optimal utilisation is very important. The UTLEON3
processor allows each thread to individually specify the number
of required registers, from 1 up to the architectural limit of 32
registers per thread given by the SPARCv8 instruction encoding.

Fine-grained synchronization and communication between
threads in one family, and between the processor pipeline and long-
latency units (cache, FPU) is accomplished by a self-synchronizing
register file. Each 32b register in the file is extended with a state
information. A register can be either FULL when its data is valid,
or PENDING when its data is scheduled to arrive, or WAITING if
there is a thread waiting for the data.

Thread Scheduling: The processor implements blocked (coarse)
multithreading, meaning a thread is switched out of the pipeline
only when an unsatisfied data dependency (i.e. a dependency on
a long-latency operation) has been encountered. This improves the
single-thread performance, but it requires the pipeline to have fully
bypassed stages. The processor allows instructions from different
threads to be present in distinct pipeline stages at the same time.

B. Previous Multithreaded Processor Architectures

Multicore architectures require many concurrent tasks to be
fully utilized. Existing architectures usually presume a multi-
programmed environment (e.g. OpenSPARC T1/T2), where pro-
cesses communicate through shared memory or by message pass-
ing. Others provide ISA extensions to support multiple thread
execution [15], but they do not automatically spread threads over
multiple cores. The MIPS MT architecture introduces only two new
unprivileged instructions: fork to create a new thread, and yield
to make a thread wait for an event. The Sparcle/Alewife [13] system

is based on a slightly modified SPARC architecture. It employs
block (coarse) multithreading. The SPARC register windows are
used to implement 4 independent thread contexts rather than as
a register stack; context switching and thread scheduling is done
in software via fast traps; and fine-grain synchronization through
empty/full bits is implemented in an external Communications and
Memory Management Unit and in the cache controller. The MSparc
[14] architecture is similar to Sparcle, but the context switching
mechanism is provided in hardware.

IV. DESCRIPTION OF THE MICROTHREADED COUPLING

SCHEME AND ITS IMPLEMENTATION

The accelerator subsystem, called HWFAM,5 is depicted in
Figure 3, along with an outline of the UTLEON3 CPU. The
HWFAM subsystem is directly connected to the thread scheduler
and the register file (RF) of the microthreaded processor. Note that
these connections are mandated by the SVP model which assumes
there are communication channels among cores within a cluster to
enable the distribution of threads (Section II-A).

A. Family Creation Event

A create event in the SVP paradigm represents a family of
threads (a batch of work) that shall be scheduled and executed
in the system. It is a consequence of executing the create
instruction that starts the whole family (not an individual thread
within the family). The create event includes all parameters of the
family:
(a) Family ID (fid) – uniquely identifies the family instance in the

compute cluster.
(b) Thread starting address in the instruction memory – uniquely

identifies the function of the family of threads.
(c) Start/step/limit values defining the index space of the family

of threads – roughly correspond to the amount of work in the
family.

(d) Base addresses of the family global and shared registers in
the processor register file – specifies the register locations
of further family parameters (apart from the start/step/limit
values).

(e) Address of the synchronization register – for signalling the
child family termination back to the parent thread.

B. Thread Mapping Table

All create events that originate in the thread scheduler of the
CPU are communicated to the Thread Mapping Table (TMT) in
the HWFAM subsystem (see step 1 in Figure 3). The table maps
families of threads implemented in software to their hardware-
accelerated counterparts that are functionally equivalent (by def-
inition). In the mapping table the software thread program address
(32 bits) is looked up in a hardware associative table.

We implemented the TMT unit as a content-addressable fully-
associative memory in hardware (see the discussion in Sec-
tion V-B). Thread starting addresses from the create events are
used as the lookup keys. The actual table contents is loaded
during program initialization by software. To this end the table
is accessible through the internal configuration bus and the host
bridge as a standard memory-mapped device to the main processor.

5HWFAM = Hardware Families of Threads

Data transfer and control overheads can render families with
small number of threads perform worse in a hardware accelerator
than in the general-purpose processor. Using the start, step and
limit fields of the create event the TMT unit computes the size of
the family of threads: size = (limit − start + 1)/step. (In our
current implementation we assume step is a compile-time known
constant, thus we can avoid the division.)

Therefore when the lookup performed in TMT by the thread
address succeeds, the size of the family of threads is further
compared to the minimal and maximal sizes specified in the
table. Finally, when the decision is made, a response is sent back
to the CPU thread scheduler; when the family cannot execute in
an accelerator (it was not found in the TMT, or the size check
has failed) the general-purpose processor continues with a normal
execution of the family of threads. Otherwise, the create event is
handed over to the Job Control Unit (JCU) and the microthreaded
processor is informed that it does not have to schedule the execution
of the particular family of threads.

C. BCE Cores and Data Transfers

The external interface of a BCE custom accelerator core is very
simple. It consists merely of dual-ported local memories that are
common in the FPGA technology (Figure 3 right). One memory
port of each dual-ported memory is reserved for the core, the
other for a master controller, such as the Job Control Unit or
the DMA engine. Each BCE core can be connected to several
local memories; one memory block is reserved for control and
configuration functions.

The organization described eases the achievement of the timing
closure, particularly if the BCE core is implemented in a different
clock domain, and it also facilitates FPGA partial reconfiguration.
More information can be found in [2].

Coarse data transfers between the local memory blocks of BCE
accelerator cores and the main memory connected over the AMBA
bus are handled by a configurable DMA Engine. The DMA engine
can be set-up from inside the subsystem by the Job Control Unit
because its configuration interface is facing inwards. The Host
Bridge allows an outside entity (the main processor) to access
the subsystem internals during initialization and for debugging
purposes.

D. Job Control Unit for Accelerator Control

Sequencing of tasks within the subsystem is handled by the Job
Control Unit (JCU). It is based on the PacoBlaze 3 microcontroller
that implements Xilinx’s 8-bit KCPSM3 ISA. We made the follow-
ing modifications to the PacoBlaze 3 microcontroller to improve
its programmability and performance: (a) all internal data paths
were extended to 16 bits and two new instructions were added to
support the 16 b processing; (b) the processor I/O port protocol
was extended with a hardware busy signal; (c) a register+offset
addressing mode was added to the I/O and scratch-pad access
instructions.

The JCU handles all the ‘impedance matching’ between software
calling conventions and execution in accelerators. During system
initialization a firmware is downloaded into the JCU’s embedded
microcontroller. The microcontroller executes an event-driven pro-
gram in a loop to handle the following tasks:

Microthread

Scheduler

CREATE

CLEANUP

D
a
ta

M
e
m
 B

D
a
ta

M
e
m
 A

D
a
ta

M
e
m
 Z

C
o
n
tr
o
l

M
e
m
.

In
te
rn
a
l
D
a
ta
 B
u
s

D
M
A

E
n
g
in
e

H
o
s
t

B
ri
d
g
e

AMBA System Bus

5b: create-event(fid, ...)

In
te
rn
a
l
C
o
n
fi
g
u
ra
ti
o
n
 B
u
s

Register

File

(RF)

UTLEON3 CPU

Access RF for

Family Parameters

Release Family
(I, D)-

Caches

B
a
s
ic
 C
o
m
p
u
ti
n
g
 E
le
m
e
n
t
0

V
THREAD

ADDR.

MIN.

SIZE

MAX.

SIZE

JOB

TYPE

1: create-event(fid, thr-addr, start, step,

limit, glb-regs, shared-regs, sync-reg)

2: Lookup thr-addr.

3: Found? 4: Check size?
Yes Yes

No No

5a: create-in-processor(fid)

6
:
re
s
p
o
n
s
e

to
 s
c
h
e
d
u
le
r

5b: create-in-hwfam(fid)

Thread

Mapping

Table

FE

WB

XC

MA

EX

RA

DE

In
-o
rd
e
r
In
te
g
e
r
P
ip
e
lin
e

Firmware

Mem.

Simple 16b

CPU

Job Control Unit

HWFAM Subsystem

Figure 3. Block diagram of the HWFAM accelerator subsystem, with connections to the UTLEON3 processor (the CPU part of the picture is highly
simplified for brevity). The CPU contains an in-order 7-stage integer pipeline, non-blocking caches, self-synchronizing register file, and the microthread
scheduler. The HWFAM subsystem is composed of the Thread Mapping Table (TMT) unit which directly interfaces the microthread scheduler and the
register file of the CPU, and the Job Control Unit (JCU) that handles the control operations.

• Communication with the TMT unit and UTLEON3 Thread
Scheduler to receive and release families of threads.

• Access to the UTLEON3 Register File to fetch family global
and shared registers that are part of the software calling con-
vention. Typically the family global registers contain memory
addresses required to configure the DMA engine, and the
special sync register is used to signal completion of a family
of threads.

• Configuration and triggering of channel transfers in the DMA
engine and computations in BCE cores.

Thanks to the event-driven programming the JCU can control
multiple BCE cores at a time, it supports data streaming with
ping-pong buffering, and dynamically overlaps computation and
data transfers. This enables acceleration of families of threads that
access I/O arrays that are larger than the limited capacity of the
BCE local memories allows.

E. Discussion

The previous work, for example the MOLEN protocol [6],
utilizes the main processor for accelerator control because the
processor is unused anyway during the accelerator run-time. In
the microthreaded coupling scheme we introduce an additional
simple processor in the Job Control Unit to handle the accelerator
control because we expect the microthreaded processor to continue
executing other unrelated families of threads in the meantime.

The approach also decouples hardware and software application

programming and toolchain flows. The application software binary
need not be extensively modified to support hardware accelerated
execution, and on the other hand the low-level control of custom
accelerators can be hidden in the programmable Job Control Unit.

In the scheme the JCU autonomously accesses the CPU register
file to read parameters of a family of threads stored in its general-
purpose registers. This requires an additional port to the register
file. However, the UTLEON3 processor already contains such a
port, which is used for late (non-critical) updates of the register file
from D-Cache. As the HWFAM subsystem accesses the register file
only when a family is created and when it finishes, we time-share
the existing RF port. Thus we do not introduce any significant
additional costs in the processor in terms of resources and clock-
cycle timing.

In our scheme we can easily take advantage of the family
start, step, and limit parameters that are already available during
the create event to dynamically decide if the function (family) is
suitable for hardware execution.

As the hardware resource allocation for families of threads is
centralized in the JCU, our scheme automatically handles concur-
rent execution without the need for locking and synchronization
between otherwise unrelated threads.

V. EXPERIMENTS

The FIR program in Figure 2 was implemented in the mtsparc
assembly for execution in the microthreaded processor UTLEON3.

Table I
SYNTHESIS RESULTS IN Xilinx Virtex 5 TECHNOLOGY (XC5VLX110T).
r = NUMBER OF ROWS IN THE ASSOCIATIVE THREAD MAPPING TABLE.

Component BRAM FFs LUTs DSP48E
UTLEON3 86 5405 10874 4
DMA + Bridge +
Internal Bus

15 495 549 0

Job Control Unit 4 126 409 0
FIR BCE 6 216 114 3
DCT BCE 2 542 451 4
Thread Mapping
Table:

r = 16 rows 9 915 644 0
r = 8 rows 8 665 529 0
r = 4 rows 8 539 495 0
r = 2 rows 8 475 455 0

Simultaneously an accelerated implementation in a BCE core
was developed. The FIR BCE core was instantiated twice in the
HWFAM subsystem to allow a concurrent execution of up to two
families of threads in hardware. The JCU allocates a FIR BCE
for a particular instance of a family of threads dynamically. In
our implementation the JCU temporarily switches off the TMT
unit when both the BCE cores are occupied. However, other job
scheduling schemes can be implemented in the JCU firmware.

In the experiments we chose the number of FIR taps to be
constant (t = 24) as this is a typical value used in the embedded
DSP domain for signal processing tasks.

The whole SoC design (UTLEON3 processor, HWFAM subsys-
tem, peripheral modules) can be synthesised in the Xilinx XUPV5-
LX110T Evaluation Board (ML509) that is supported in Gaisler’s
GRLIB package. In the experiments the main system memory had
a latency of 2 waiting cycles per word as this is the required
configuration of the external on-board 1MB SRAM.

A. Hardware Synthesis Results

The system was synthesized using Synopsis Synplify D-2010.03
and Xilinx ISE 12.3 in the Xilinx Virtex 5 XC5VLX110T part;
Table I lists the synthesis results. Apart from the FIR BCE core, a
hardware implementation of the Discrete Cosine Transform (DCT)
from JPEG was developed to compare the hardware resource
utilization with the other components. The number of rows r in
TMT governs the number of classes of families of threads (distinct
functions) that can be mapped to hardware accelerators at the same
time. In the presented experimental setup with two equivalent FIR
BCEs we required only one TMT row that maps the address of the
FIR family in the mtsparc binary to a FIR BCE.

The content-addressable memory in our naive implementation of
the TMT unit performs lookups in O(1) time. However, in Table I
we see that in terms of hardware resources the implementation does
not scale well when the number of TMT rows r increases. Other
implementation techniques can improve the resource scaling issue,
but probably at the cost of increased lookup latency; this issue is
dealt with in Section V-B.

B. Impact of the TMT Unit’s Latency on the Processor Efficiency

We evaluate the impact of the TMT latency on the processor
execution efficiency. The processor must cope with additional

Table II
CPU EFFICIENCY IPC DEGRADATION DUE TO THE ADDED LATENCY OF
THE TMT UNIT; n IS FIR INPUT VECTOR LENGTH; NUMBER OF TAPS:

t = 24.

n CPU IPC IPC Degradationno TMT with TMT
26 0.659 0.634 -0.025
32 0.665 0.661 -0.004
40 0.676 0.673 -0.002
48 0.681 0.676 -0.005
64 0.680 0.673 -0.007
80 0.679 0.673 -0.006

Additional TMT Latency [clock cycles]

C
P

U
 I
P

C
 (

e
ff
ic

ie
n
c
y
)

[−
]

0 8 16 24 32 40 48 56 64

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

n=26

n=32

n=40

Figure 4. CPU IPC degradation if the TMT unit’s latency hypothetically
increases.

latencies as all family create events are routed through the TMT
unit. The latency tolerance can be measured in terms of the CPU
efficiency, or IPC (Instructions Per Cycle):

IPC =
IC

CC
(2)

where IC is the instruction count, and CC is the total running
time in clock cycles.

We ran 8 identical FIR computations in software to simulate
higher workload and to average out transient effects of the dy-
namic thread scheduling. We limited the number of concurrently
scheduled FIRs to at most 3 by the blocksize parameter so that we
obtain a more realistic (less parallel) workload.

Baseline Efficiency Degradation: Table II shows the IPC degra-
dation when the TMT unit is switched on. All create events,
including those not belonging to any hardware accelerated family,
are routed through the TMT unit, but no families of threads are
actually executed in the accelerators (otherwise the instruction
count IC would no longer be constant). We see that in the worst
case (i.e. a short FIR computation: n = 26, t = 24) the IPC
degradation is 0.025, but typically it is less than 0.01. The efficiency
degradation in the worst case is caused by a higher ratio of the
create events to compute operations in the processor.

TMT Latency Scaling: So far we have assumed the TMT unit’s
latency is only a few clock cycles. An implementation of the

n: FIR input array length [words]

S
p
e
e
d
u
p
 o

ve
r

S
W

 i
m

p
l.
 [
−

]

24 32 40 48 56 64 72 80 88 96

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Always in the FIR BCE

Dynamically according to size

Figure 5. Speedups (including data transfers) over an all-software
implementation for short input vectors n where accelerator overheads are
most pronounced. Single FIR BCE, t = 24 taps, 24 · (n − 23) MAC
operations.

TMT unit with a large number (tens to hundreds) of rows r
would allow us to simultaneously map many classes of families
of threads to hardware. (One example is to map kernels from
the BLAS6 package.) However, the clock cycle latency of such an
implementation will be probably on the order of O(log r), or even
O(r) if sequential search is used.

To simulate and evaluate the situation we modified our TMT
unit to impose an additional artificial non-pipelined latency during
its processing of the create events that come from the processor.
Figure 4 plots the efficiency IPC with respect to the additional
latency. In the worst case (i.e. a short FIR computation: n = 26,
t = 24) the IPC degrades from 0.640 to 0.615 (i.e. by 0.025)
when the TMT latency increases by 64 cycles. This shows that the
microthreaded processors tolerates the latencies introduced by our
coupling scheme and validates the approach.

C. Filtering Short Families of Threads in the TMT Unit

The FIR BCE computes one MAC7 per cycle while the software
implementation requires at least 4 cycles for the same computation
(2x LOAD, 1x MUL, 1x ADD). However, the main disadvantage
of the accelerated hardware implementation is the need to transfer
the I/O data to/from the main memory. In the experiments we
considered the worst case scenario: at the beginning the data were
live in the processor cache, they had to be flushed to the main
memory, then downloaded into the BCE local buffer memory by
the DMA engine in HWFAM, and at the end the results uploaded
back to the main memory. Combined with other control overheads
in the JCU the software implementation of a family can easily be
faster.

Figure 5 shows a speedup of a single FIR computation with
respect to an input vector length n. The number of the FIR taps is
constant (t = 24). Recall that n ≥ t must hold and (n−t+1) is the
output vector length. The computation requires t·(n−t+1) = (nt−

6BLAS = Basic Linear Algebra Subprograms
7MAC = Multiply-Accumulate

a) DMA memory transfers triggered by JCU

60000 65000 70000 75000 80000 85000 90000 95000

0.0

0.5

1.0

b) FIR−BCE #1 Occupancy

60000 65000 70000 75000 80000 85000 90000 95000

0.0

0.5

1.0

Time [clock cycles]

c) FIR−BCE #2 Occupancy

60000 65000 70000 75000 80000 85000 90000 95000

0.0

0.5

1.0

Figure 6. An example of concurrent control of two accelerators handled
by the Job Control Unit. Each accelerator computes one family of threads
(FIR with n = 1024). Each BCE has to be triggered four times (with the
data transfers being scheduled in the ping-pong manner in background) as
its local memories cannot hold the whole data at the same time.

t2+t) MAC operations, and (t+n+(n−t+1)) = (2n+1) words
have to be transferred over the system bus (and evicted/flushed
from the processor D-Cache beforehand, thus roughly doubling
the actual number of clock cycles).

Indeed, the sample accelerated hardware FIR BCE reaches a
speedup of 2x for n = 96 (i.e. 1752 MACs); however for n < 44
(i.e. less than 504 MACs) the software implementation is faster
due to the data transfers – the (◦) plot shows the speedup much
less than 1 in that region. The microthreaded coupling scheme can
amend the situation by filtering families of threads in the TMT
unit according to their size so that short FIR families will be
executed in software. This is shown by the (4) plot which almost
restores performance in the troublesome region. The remaining
speedup degradation is due to the added latency of the create events
introduced in the TMT unit.

D. Concurrent Accelerator Control

As the individual accelerator cores handle only the computation
itself, the data transfers have to be managed by the Job Control
Unit, including the ping-pong buffering required for computations
involving large arrays. Figure 6 shows execution of two concurrent
FIR computations in two FIR BCE cores managed by the JCU. As
the FIR length was n = 1024, while the given implementation of
the FIR BCE cores has the maximal vector length of only 256
elements, each accelerator has to be triggered four times, with
data transfers taking place asynchronously. This is implemented
in the JCU firmware by modelling the buffer memories as pools
with low/high watermarks, and the DMA engine and BCE cores
as general data pumps.

VI. CONCLUSION

The proposed microthreaded scheme for coupling custom accel-
erators to SVP processors was demonstrated in a sample FPGA

implementation. The benefit of the microthreaded coupling is that
it handles concurrency in a uniform manner both in software and
in hardware accelerators.

Selected parts of user computation, called families of threads, are
implemented both in software to be executed in the processor, and
as hardware configurations for a hardware accelerator. We have
introduced a Thread Mapping Table (TMT) hardware unit that
couples the software and hardware implementations, and modified
the UTLEON3 processor to route all family creation events through
it. Family creation requests that can be executed in hardware
are transparently handed over to a Job Control Unit: a simple
secondary controller that handles DMA data transfers between the
main memory and local buffers, and commands the accelerator
core(s) to execute a given function; at the same time the main
processor continues executing other unrelated families of threads.

In the experimental section we have focused on specific features
of the proposed design and evaluated the possible negative effect of
increased latencies in the processor. The filtering of short families
of threads in the TMT unit ensures that the custom hardware
accelerators are not invoked if the expected overhead outweighs
the speedup. On the other hand, it was shown that in the worst
case the coupling scheme can degrade the processor efficiency by
0.025 in our case study, but typically less than 0.01.

ACKNOWLEDGMENT

This work was supported and funded by the European Com-
mission under Project Apple-CORE No. FP7-ICT-215215, and by
the Czech Ministry of Education under Project No. 7E08013.
The paper reflects only the authors’ view; neither the European
Commission nor the Czech Ministry of Education are liable for
any use that may be made of the information contained herein. For
information about the Apple-CORE project see [16].

REFERENCES

[1] F. Barat, R. Lauwereins, and G. Deconinck, “Reconfigurable
instruction set processors from a hardware/software perspective,”
Software Engineering, IEEE Transactions on, vol. 28, no. 9, pp.
847 – 862, 2002.

[2] M. Danek, J. Kadlec, R. Bartosinski, and L. Kohout, “Increas-
ing the level of abstraction in FPGA-based designs,” in Field
Programmable Logic and Applications, 2008. FPL 2008. Inter-
national Conference on, 2008, pp. 5 –10.

[3] F. Thoma, M. Kuhnle, P. Bonnot, E. Panainte, K. Bertels,
S. Goller, A. Schneider, S. Guyetant, E. Schuler, K. Muller-Glaser,
and J. Becker, “MORPHEUS: Heterogeneous Reconfigurable
Computing,” in Field Programmable Logic and Applications,
2007. FPL 2007. International Conference on, 2007, pp. 409 –
414.

[4] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The Chimaera
Reconfigurable Functional Unit,” 1997.

[5] J. Hauser and J. Wawrzynek, “Garp: a MIPS processor with a
reconfigurable coprocessor,” in FPGAs for Custom Computing
Machines, 1997. Proceedings., The 5th Annual IEEE Symposium
on, 1997, pp. 12 –21.

[6] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,
and E. Panainte, “The MOLEN Polymorphic Processor,” Com-
puters, IEEE Transactions on, vol. 53, no. 11, pp. 1363 – 1375,
2004.

[7] P. G. Zaykov, G. K. Kuzmanov, and G. N. Gaydadjiev, “Recon-
figurable multithreading architectures: A survey,” in Proceedings
of the 9th International Workshop on Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation, ser. SAMOS ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 263–274.

[8] S. Uhrig, S. Maier, G. Kuzmanov, and T. Ungerer, “Coupling of
a reconfigurable architecture and a multithreaded processor core
with integrated real-time scheduling,” in Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International,
2006, p. 4 pp.

[9] H. K.-H. So, A. Tkachenko, and R. Brodersen, “A
unified hardware/software runtime environment for FPGA-based
reconfigurable computers using BORPH,” in Proceedings of
the 4th international conference on Hardware/software codesign
and system synthesis, ser. CODES+ISSS ’06. New York,
NY, USA: ACM, 2006, pp. 259–264. [Online]. Available:
http://doi.acm.org/10.1145/1176254.1176316

[10] C. Jesshope, “A model for the design and programming of multi-
cores,” Advances in Parallel Computing, vol. High Performance
Computing and Grids in Action, no. 16, pp. 37–55, 2008.

[11] ——, “Scalable instruction-level parallelism,” in Computer Sys-
tems: Architectures, Modeling, and Simulation. Springer Berlin
/ Heidelberg, 2004, pp. 383–392.

[12] M. Danek, L. Kafka, L. Kohout, and J. Sykora, “Instruction
set extensions for multi-threading in LEON3,” in Design and
Diagnostics of Electronic Circuits and Systems (DDECS), 2010
IEEE 13th International Symposium on, 2010, pp. 237 –242.

[13] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung,
G. D’Souza, and M. Parkin, “Sparcle: An evolutionary processor
design for large-scale multiprocessors,” IEEE MICRO, vol. 13,
pp. 48–61, 1993.

[14] A. Mikschl and W. Damm, “MSparc: A Multithreaded Sparc,”
in Euro-Par’96 Parallel Processings: Second International Euro-
Par Conference, Vol II, LNCS 1124. Springer Verlag, 1996, pp.
461–469.

[15] T. Ungerer, B. Robič, and J. Šilc, “A survey of processors with
explicit multithreading,” ACM Comput. Surv., vol. 35, no. 1, pp.
29–63, 2003.

[16] The Apple-CORE Consortium. Architecture Paradigms and Pro-
gramming Languages for Efficient programming of multiple
COREs. http://www.apple-core.info.

